LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER – NOVEMBER 2007

BB 6

ST 3809 - STOCHASTIC PROCESSES

Date : 26/10/2007 Time : 9:00 - 12:00

Dept. No

Max.: 100 Marks

Section-A(10×2=20 marks)

Answer ALL the questions. Each question carries TWO marks

- 1. Define a discrete time Markov Chain with stationary transition probabilities.
- 2. Classify the states of the following Markov chain with state space $\{1,2\}$ having the following transition probability matrix.

$$P = \begin{bmatrix} 1 & 0 \\ 0.8 & 0.2 \end{bmatrix}$$

- 3. Let j be a state for which $f_{jj}^{(n)}=n/(2^{n+1})$, n>0. Show that j is recurrent. 4. If lim $p_{jj}^{(n)}>0$, show that state j is aperiodic.
- n→∞
- 5. Write down the postulates of Poisson process.
- 6. Under the condition X(0)=1, obtain the mean of Yule process.
- 7. Define renewal function and find the same, when the inter occurrence times are independent and identically distributed exponential.
- 8. Define Markov Renewal process.
- 9. Consider a Branching process $\{X_n, n=0,1,2,...\}$ with the initial population size $X_0=1$ and the following off-spring distribution.

 $p_0=1/8$, $p_1=1/2$, $p_2=1/4$, $p_3=1/8$.

Find the mean of the population size of the nth generation.

10. Distinguish between wide-sense and strictly stationary processes.

Section-B (5×8=40 marks) Answer any FIVE questions. Each question carries EIGHT marks.

- 11. Consider a Markov chain on the non-negative integers such that, starting from state j, the particle goes in one step to the state (j+1) with probability p or to the state 0 with probability (1-p).
 - Show that the chain is irreducible i.
 - Find $f_{00}^{(n)}, n \ge 1$. ii.
 - Show that the chain is recurrent. iii.
- 12. Define the period of a state in a Markov chain. Show that states belonging to the same class have the same period.
- 13. Obtain the system of differential equations satisfied by the transition probabilities of Yule process and calculate its transition probabilities with the initial condition X(0)=N.
- 14. Define compound Poisson process. For this process, obtain the generating function, expectation and Variance.

- 15. What are the postulates governing the birth and death process? Obtain the differential –difference equations governing this process.
- 16. Determine E[N(t)] and $Var\{N(t)\}$, where $\{N\{t\} \mid t \in [0,\infty)\}$ is a Renewal process.
- 17. Define (i) Submartingale and (ii) Super martingale. If $\{X_n\}$ is a Martingale with respect to $\{Yn\}$, show that $E[X_{n+k} \mid Y_0, Y_1, ..., Y_n] = X_n$, for all k=0,1,2,3,...
- 18. Derive the recurrence relation satisfied by the probability generating function, where $\{X_n, n=0,1,2,...\}$ is a Branching process with $X_0=1$.

Section-C (2×20=40) Answer any TWO equestions. Each question carries TWENTY marks.

- 19. a. State and prove Chapman Kolmogorov equations for a discrete time Markov chain. (10 marks).
 - b. Consider a random walk on the integers such that $p_{i, i+1} = p$, $p_{i,i-1}=q$ for all integers i (0<p<1, p+q=1). Determine $p_{00}^{(n)}$. (10 marks)
- 20. a. State and prove the Basic limit theorem of Markov chains.(12 marks)
 - b. Examine whether stationary distribution exists for the Markov chain with transition probability matrix
 - $P = 0 \begin{bmatrix} 0.3 & 0.5 & 0.2 \\ 1 & 0.6 & 0.0 & 0.4 \\ 2 & 0.0 & 0.4 & 0.6 \end{bmatrix}$. Obtain the same if it exists. (8 marks)
- 21. a. For a Poisson process {X{t}, t \in [0, ∞)},show that P[X(t)=n] = $e^{-\lambda t}(\lambda t)^n/n!$, n=0, 1, 2,... (10 marks)
 - b. The number of accidents in a town follows a Poisson process with the mean of 2 accidents per day and the number of people involved in i th accident has the distribution $P[X_1=k] = 1/2^k$, k=1,2,3,... Find the mean and variance of the number of people involved in accidents per week. (10 marks)
- 22. a. Let $\{Xn,n\geq 0\}$ be a Branching process with one ancestor. Let the off-spring

 $\begin{array}{ll} \text{distribution be } p_j = bc^{j\text{-}1}, \ b > 0, \ c > 0, \ b + c < 1, \ j = 1, 2, 3, \ldots; \ \Sigma \quad p_j = 1. \ \text{Obtain } E[Xn], \\ j = 0 \\ \text{Var}(Xn) \ \text{and} \ cov(X_m, X_n), \ m < n. \end{array}$

b. State and prove the prediction theorem for the minimum mean square error predictors.

(8 marks)
